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Polymer stress tensor in turbulent shear flows
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The interaction of polymers with turbulent shear flows is examined. We focus on the structure of the elastic
stress tensor, which is proportional to the polymer conformation tensor. We examine this object in turbulent
flows of increasing complexity. First is isotropic turbulence, then anisotrdpit homogenoysshear turbu-
lence, and finally wall bounded turbulence. The main result of this paper is that for all these flows the polymer
stress tensor attains a universal structure in the limit of large Deborah numbet D&e present analytic
results for the suppression of the coil-stretch transition at large Deborah numbers. Above the transition the
turbulent velocity fluctuations are strongly correlated with the polymer’s elongation: there appear high-quality
“hydroelastic” waves in which turbulent kinetic energy turns into polymer potential energy and vice versa.
These waves determine the trace of the elastic stress tensor but practically do not modify its universal structure.
We demonstrate that the influence of the polymers on the balance of energy and momentum can be accurately
described by an effective polymer viscosity that is proportional to the cross-stream component of the elastic
stress tensor. This component is smaller than the streamwise component by a factor proportichdfitmiDe
we tie our results to wall bounded turbulence and clarify some puzzling facts observed in the problem of drag
reduction by polymers.
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I. INTRODUCTION (1.2 of the mean polymer stress tensdy, that enjoys a
high degree of universality. Denoting By and y the unit
vectors in the mean velocity and mean velocity gradient di-
rections(streamwise and cross-stream directions in a channel
é"eometry and byZz=%X Xy the spanwise direction, we show
that tensodl, has a universal form:

The dynamics of dilute polymers in turbulent flows is a
rich subject, combining the complexities of polymer physics
and of turbulence. Besides fundamental questions there is
significant practical interest in the subject, particularly be-
cause of the dramatic effect of drag reduction in wall
bounded turbulent flowisl—4]. On the one hand, the polymer 2D€& De 0
addltlve_s proylde a chan_nel of dissipation in add'|t|on to the My=T1Y| De 1 0| forDe>1. (1.29
Newtonian viscosity; this had been stressed in the past
mainly by Lumley[5,6]. On the other hand, the polymers can 0 0 C

store energy in the form of elastic energy; this aspect hatne sees that in th&-9) plane the tensorial structure B,

been stressed, for example, by Tabor and de Gefifled s independent of the statistics of turbulence:
better understanding of the relative roles of these aspects

requires a detailed analysis of the dynamics of the “complex I5*=2 DY, Ty’ =TIy*=Delly¥.  (1.2b

fluid” obtained with dilute polymers in the turbulent flow Due to the symmetry of the considered flows with respect to

regime. - : . - eflectionz— -z, the off-diagonal componentd§* and IT}*
Some important progress in the theoretical description o anish identically:

the statistics of polymer stretching in homogeneous, isotro-
pic turbulence of dilute polymer solutions was offered in or=11¥=0. (1.20

Refs. [8-10. Here we want to stress the fact that in the_l_he only nonuniversal entry in E€1.23 is the dimension-
practically interesting turbulent regimes, and in part|cularIeSS coefficientC. We show thatC=1 for shear flows in

when there exists a large drag reduction effect, the chara%hiCh the extension of the polvmers is caused by tempera-
teristic mean velocity gradier(say, the mean she&,), is poly y P

hi than the i | laxation fi ture fluctuations and/or by isotropic turbulence. For aniso-
much Jarger than e INverse polymer relaxation g, tropic turbulence the consta@tis of the order of unity.

Smp> 1. Usually this par.ameter is referred to as the Deborah The universal tensorial structuf®.23—(1.29 has impor-
or Weissenberg number: P
tant consequences for the problem of drag reduction in dilute
De=Wi= S, (1.1)  Ppolymeric solutions. We show that the effect of the polymers
on the balance of energy and mechanical momentum can be
Indeed, the onset of drag reduction corresponds to Reynoldiescribed by an effective polymer viscosity that is propor-
number Rg at which De~1. Large drag reduction corre- tional to the cross-stream component of the elastic stress ten-
sponds to Re- Re,, at which De=Re/Rg,> 1. sor ITY. According to Eq.(1.2b this component is smaller
The aim of this paper is to provide a theory of the poly-than the streamwise componelif* by a factor of 2 Dé
mer stress tensdi [defined in Eq(2.1b)] in turbulent flows  This finding resolves the puzzle of the linear increase of the
in which De>1. The main result is a relatively simple form effective polymeric viscosity with the distance from the wall,
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while the total elongation of the polymefidominated by the  equilibrium is characterized by a single relaxation time
largest componenkly* of the tensor(1.23] decreases with which is constant at small extensions. In this cBkean be
the distance from the wall. We show that our results for thewritten as

profiles of the componentd} are in a good agreement with

direct numerical simulatioflDNS) of the finitely extensible T(t,r) = @ER(t,r)R(t,r), (2.1b
nonlinear elastic—Peterlin’s versidRENE-P model in tur- Tp

bulent channel flow.

The paper is organized as follows. In Sec. Il A we presen
the basic equations of motion of the problem. In Sec. I Bw
describe the standard Reynolds decomposition of the eq
tions of motion for the mean and fluctuations of the releva
variables. In Sec. Il C we find general solution fidf, and
formulate(the very weakconditions at which it simplifies to
the universal form(1.28—(1.20.

where vy, is polymeric viscosity for infinitesimal shear, and
R is the polymer end-to-end elongation vector, normalized
eby its equilibrium valueRg, (in equilibrium RR=4). The
u<'Zl(verage in Eq(2.1b is over the Gaussian statistics of the
mLangevin random force which describes the interaction of
the polymer molecules with the solvent molecules at a given
temperature, but not over the turbulent ensemble.

The equation for the elastic stress tendbrhas the form

In Sec. lll we analyze the phenomenon of polymer
stretching in shear flows with prescribed turbulent velocity a1l ;1
fields, either isotropic, Sec. Il B, or anisotropic, Sec. Il C. ot +(V-V)II=S-II+1I-S' - :(H — gy,

We relate the value o€ to the level of anisotropy in the P

turbulent flow. We also show in this section that a strong
mean shear suppresses the threshold value for the coil-
stretched transition by a factor Besee Eqs(3.10a and
(3.100. Heq=Tleqd, Ileq= voy/ 7.

Sections IV and V are devoted to the case of strong tUryere S=S(t,r) is the velocity gradient tensor andlis unit
bulent fluctuations for which the fluctuating velocity and {onsor.
polymeric fields are strongly correlated. In Sec. IV we con-  cpgice of coordinatedn this paper we consider both ho-

sider the case of homogeneous shear flows. In Sec. V Wgqgeneous and wall bounded shear flows. In both cases we

discuss wall bounded turbulence in a channel geometry,qse the coordinates such that the mean velocity is ik the
compare our results with available DNS data and apply 0Ujrection and the gradient is in thg direction. In wall

finding to the problem of drag reduction by polymeric solu- o, nded flowsk and§ are unit vectors in the streamwise and

S=(VV)", Si=sVi/ox, (2.10

tions. , ) . the wall normal directions:
Section VI presents summary and a discussion of the ob-
tained results. Vo=(V)=Sg:1, Sp= XY,
The Appendix offers some useful exact relationships for
the energy balance in the system. only Vi=Sy#0 and V=% #0. (2.2

The unit vector orthogonal to andy (the spanwise direction

Il. EQUATIONS OF MOTION AND SOLUTION FOR in wall bounded casgss denoted ag.

SIMPLE FLOWS

A. Equations of motion for dilute polymer solutions B ] ]
) o ) B. Reynolds decomposition of the basic equations
The equation for the velocity field of the complex fluid , .
In the following we need to consider separately the mean

reads
values and the fluctuating parts of the velocityr ,t), the
Vv _ B velocity gradientS(r,t), and the elastic stress tendd(r,t)
P (V- VIV=1AV-VP+V -II, fields. We define the fluctuating parts via
V=Vo+v, S=Sy+s, H=Iy+m,.... (2.3

V.-v=0. (2.19
B B ) ) All the mean quantities will be denoted Wwita 0 subscript
HereV=V(t,r), P=P(t,r) andw, are the fluid velocity, the (g g the mean velocity,), and all the fluctuating quantities
pressure, and Newtonian viscosity of the neat fluid, respeqyy the lower-case letters, p, ,s, etc. These mean values
tively. The fluid is considered incompressible, and units argyre computed with respect to the appropriate turbulent en-
chosen such that the density is 1. The effect of the addedemple. Note that the mean pressure in a homogeneous shear

HEH(U)- ) ] _ o velocity Vi=Syy, of course are coordinate independent and,
In this paper we consider dilute polymers in the limit that by definition, time independent.

their extension due to interaction with the fluid is small com-

pared with their chemical length. In this regime one can

safely assume that the polymer extension is proportional to
the applied forcgHook’s law). We simplify the description a. The equation for the mean elastic stress terddgiol-
of the polymer dynamics assuming that the relaxation tdows from Eq.(2.10:

1. Equations for the mean objects
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_+_ My=So- Mo+ 1y Sp+Q, (2.49
Dt Tp
1
Q= _Heq+ Qr, (2.4b
Tp
Qr=(s-m+m-3, (2.40

wherellg, is given by Eq.(2.19, and(---) denotes an aver-
age with respect to the turbulent ensemble. In components

(2 2 Jg=spung g+
:
P

Dt

QU= —Tlegd! + (s + ). (2.4
p

HereD/Dt is the mean substantial time derivative

DI

2.5
Dt gt 2.9

V V—i+SOi
0 VT W

The substantial derivative vanishes in the stationary cas

when all the statistical objects arendx independent.
b. The equation for the mean velocifpllows from

Eqg. (2.19:

T TS W TIg), 26
whereW is the Reynolds stress tensor:
Wi = (vivl). 2.7
In the stationary caséV,/dt=0 and Eq.(2.6) gives
oS~ WY +TIy =P, (2.9

PHYSICAL REVIEWT, 016305(2005

C. Solutions for simple flow configurations
1. Implicit solution for shear flows

Note that the mean shear tenssy satisfies, besides the
incompressibility condition FSy}=3)=0, one additional
constraint,

sigk=o. (2.10

Remarkably, this property &, uniquely distinguishes shear
flows from other possibilities(elongational or rotational
flows): if Eq. (2.10 holds, one can always choose coordi-
nates such that the only nonzero componentSgfis S
:S)_

Having Eq.(2.10 consider Eq.(2.49 in the stationary
state:

Hosz(So'Ho"‘Ho'Sg"‘Q)- (2.1)

We can proceed to solve this equation implicitly, treat@@g
on the right-hand sidéRHS) as a given tensor, and solve the
linear set of equation fokl,. In the considered geometry Eq.
(2.11) is a system of four linear equations, and the solution is

éexpected to be quite cumbersome. However, prop&i0

adllows a very elegant solution of this system. Using Eq.
(2.1)) iteratively (i.e., substituting instead dil, on the RHS
of Eq. (2.1 the whole RH$, we get

HOZZTZSO'HO'SS"'TZ(SO'Q"'Q'SE)
+7,Q+ 7, [So Q+Q - (SHT].

One sees that due to E@.10 the last term in this equation
vanishes. Repeating this procedure once again, we obtain the
exactsolution of Eq.(2.11) in the form of a finite(quadrati¢
polynomial of the tensoSy:

=275, QS+ (S Q+ Q- S + 7,Q.
(2.129

where constant of integratioR has a physical meaning of
the total momentum flux. The three terms on the left-han
side (LHS) of Eq. (2.8) describe the viscous, inertial, and
polymeric contributions tdP. In a homogeneous-shear ge-
ometry all these terms areindependent constants, whereas
in a channel geometry they depend on the distance to the
wall. Notice that Eq(2.8) also can be considered as an equa-
tion for the balance of mechanical forces in the flow.

9rhe individual components of the solution E®.129 are
given by

o= (2 DEQY+2 De QY+ Q),

115’ = 7(De Q¥+ QY),

2. Equations for the fluctuations H%y

= ’Tpry, HSZ: TpQZZ,

The equations for the fluctuating patisand = read
DY S ptuAv- Vp+ V- (m-v), (2.99
Dt v s P T, e Notice that thexzandyz components ofI, vanish due to the
symmetry of reflectiorz— —z, which remains relevant in all

=1¥?=0 (2.120

D 1 the flow configurations addressed in this paper.
(a + :)ﬂ' So-m+a-Sy+s - Mg+1ly-s'+d,, In the limit De>1 the tensorial structur€.12h can be
P simplified to the form(1.29—(1.29 if
(2.9b
whereV -»=0, and QY<DeQ, Q¥<De& QY. (2.13
® =(s-mtm-s) -V -vm (2.90 Indeed, in this case one can neglect the last two ternikjin

and the second term if[’ and obtain Eqgs(1.28—1.2¢

Here(---)~ denotes the “fluctuating part of*- ). with C=Q%/ QY.
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2. Explicit solution for laminar homogeneous shear flows Ill. POLYMER STRETCHING IN THE PASSIVE REGIME
The solution(2.12a and (2.120 allows further simplifi- A. Cross-correlation tensor Qg in Gaussian turbulence
cation in the case daminar shear flow, in whichQy of Eq. When De>1 the characteristic decorrelation time of tur-

(2.49 vanishes,Qr=0, and thus, according to Eq§2.19  bulent fluctuations,r,, <1/, is much smaller than the
and (2.4b), the tensorQ becomes proportional to the unit polymer relaxation timer,. Accordingly the turbulent fluc-

tensor: tuations can be taken ascorrelated in time:
(SInsT (1) = Epd st -t). (3.2)
Ql :%5’1, (2.14 This approximation is valid below the threshold of coil-
Tp stretched transition, when the polymers do not affect the tur-

bulent statistics. This regime will be referred to as the “pas-
sive” regime. The fourth-rank tens&,,s defined by Eq.

With this relationship Eq(2.124 simplifies to (3.1) is symmetric with respect to permutations of the two
first and two last indicesEE(;{’:Eg;g’i. Incompressibility
>DE+1 De 0 Iegrtj..s, to“’th’('a restrictionEpE;JS =0. Homogeneity implies
:’II »)) :‘:II )
Mo =1le De 1 0} (2.19 HpZSt thi;pS(s)int we assume also Gaussianity of the turbulent
0 0 1 statistics. Then the tens@; can be found using the Furutsu-

Novikov decoupling procedure developed in Ref$3,14]

Equation(2.19), in which Il is given by Eq.(2.19, is for Gaussian processes:

important in itself as aexplicit solution forIl, in the case of

laminar shear flow. But more importantly, this equation to- ij = il kK kK (3.2)

gether with Egs(2.123 and (2.12h gives a hint regarding T~ =pas 0 - '

the tensorial structure dfly even in the presence of turbu- The cross-correlation tens@y is proportional to a presently

lence, when the coupling between the velocity and the polyundetermined stress tenddg. To find II, one has to substi-

meric elongation field, leading to the cross correlat®n tute Eq.(3.2) into Egs.(2.49—2.4d or into its formal solu-

cannot be neglected. tion (2.15 and to solve the resulting linear system of four
To see why the simple resul2.15 may be relevant also equations for the nonzero componentdkf 11, 11, 1%

for the turbulent case, note first that the nondiagonal eleand ITY=I1Y,

ments withz projection, i.e.IT§* andIT¥?, are identically zero The resulting equations are quite cumbersome. The basic

in general as long as the symmeiry -z prevails. Second, physical picture simplifies, however, in two limiting cases:

for large Deborah numbers, Bel, the nonzero components (i) isotropic turbulence, Sec. Il B, arld) anisotropic turbu-

in both Egs(2.12h and(2.15 have three different orders of lence in the limit of strong shear, Sec. Il C.

magnitude Il 115> IT¥Y =117 In other words, the tensor

I, is strongly anisotropic, reflecting a strong preferential

h . ) B. Isotropic turbulence
orientation of the stretched polymers along the streamwise

direction . The characteristic deviation ang{rom the X First we consider the simplest case of isotropic turbu-
direction is of orderO(1/De). lence. In this case the tensEr,shas the form

Notice that Eqs(2.123 and(2.12D relate the polymeric I T
stress tensodl, to the cross-correlation tensa®r, Eq. Epad =E| 8" & —Z(éﬂé‘l +8°8N], (3.3

(2.49. In its turn this tensor depends on the polymeric
stretching, which is described by the same ted$grThere-  whereE is a constant measuring the level of turbulent fluc-

fore, generally speaking, Eqf2.123 and(2.12h remain an  tyations. Using Eq(3.3) in Eq. (3.2 for Q; one gets
implicit solution of the problem, which in general requires

considerable further analysis. However, as we discussed 0 :ﬂ<1'[ 5 }H> (3.4)
above, Eq(2.123 is more transparent than the starting Egs. ToE 0T ) '
(2.49—(2.40. In particular, if the tensoQ is not strongly
anisotropic, the tensorial structure ®f, is close to Eg.
(2.15 for the laminar case. We will see below that this struc-
ture is indeed recovered under more general conditions. D 1 1
In the following Secs. Il and IV we will find explicit (Et +:)Ho=So-Ho+Ho-Sg+ (EH0+—Heq) 5,
solutions for the elastic stress tensor in the presence of tur- p 7o
bulence which share a structure similar to E@.15. (3.5a
Namely, for De>1 the leading contribution to each compo-
nent of I, can be presented as Eq%.29—(1.29, in which 1
C, given by Egs.(3.13 and (5.8), is some constant of the =
order of unity, depending on the anisotropy of turbulent sta-
tistics. The stationary solution of Eq3.59 has the form

Substituting this relationship into E(R.4a8 one gets a closed
equation forlly:

1

o

=—+ (3.5b

N | 111

T

©
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o =TI 8+ 7(So + Sp) + Z75So - Sy,

~ 1
De - De< <1. (3.11
4 De
Wz = i This means that the structure of the elastic stress tensor in the
113 Tp Ellp+ l_[eq ) . . . .
Tp passive regimd3.6b hardly differs from the laminar case
(2.15.
HO = Tr{Ho} (36@

C. Elastic stress tensor in anisotropic turbulent field
In components:

Here we consider the case of strong shear-De having
2D&+1 De O in mind that in the passive regime the tensorial structure of
Epas[see Eq.(3.3)] is independent of De. In this case the

o =11’ De 1.0} (3.6D leading contributions to each component Hfy in Eqg.
0 0 1 (2.12b are
N I§* = 27, DEPQYY,
De="7,§ < De. (3.60

Héy= 7 Dery,
We see that the tensor structureldf has the same form as
in the laminar case, but with an increased relaxation fre-
quency given by Eq(3.5b.

Taking the trace of Eq9.3.68—(3.69, one gets the fol-

—_ 77 _ ZZ
H%y— Tpry, HO - TpQ y

lowing equation forl1}Y: o =1§*=0. (3.12
1 This means that for De 1 II, takes on the form(1.2a,
nmy= —TTg (3.7 (1.2b, and(1.29 with
p =YY.XX
. ; C= g';% (3.13
rz——< De2+—>E. (3.9 oo
Tp 2 The threshold condition foE can be found along the

) . o lines of the preceding subsection. The result is that only one
We see that the effective dampllﬁgde_c_reases with |rlcieas- component of the tensd,,sis important:
ing the turbulence leveE. At some critical value oE=E,
the effective damping goes to zedd;— 0, and formallyIl, — 1
— o, The critical valueE, corresponds to the threshold of =pasc 5 pe2’
the coil-stretch transition. Substituting E(B.60 into the P

threshold condition=0, one gets a third-order algebraic This result coincides to leading order with E@.10b in

(3.19

equation forX=Er,: which EY%3*0 = according to Eq(3.3).
Finally, we point out that the results presented in this sec-
5X3+ 18X%+ 4(3+ 4 D&)X = 8. (3.9  tion remain valid for finite, but small, decorrelation time

Teor— 0 in Which Z can be defined 88 =027,/ 15, where
This equation has one real ragt, which we consider in two o2={("uP)2)=Tr(s-s").
limiting cases: , Notice that experimental and numerical studj@st,17
(1) Small shear§<1/7, (De<1). In this case the show that the level of turbulent activity in turbulent poly-
threshold turbulence levé is proportional to the polymer meric flows is of the same order as in Newtonian flow at the

relaxation frequency same conditions. Simple estimations for the typical condi-
tions in the maximum drag reductiqgViDR) regime, when
== i(l _ﬁ) (3.109  One observes large drag reduction, show that the parameter
STy 9 E is far above the threshold val®.10h. Therefore, poly-

mers in the MDR regime cannot be considered as passive:
there should be some significant correlations between poly-
mers and fluid motion that prevent polymers from being in-

(2) Large shear§>1/7, (De>1). In this case the
threshold velocity gradient is much smaller. Indeed,

1 3 finitely extended despite supercritical level of turbulence.
Ee= 1- . (3.10p  The character of these correlations is clarified in the follow-
¢ 27,DE\" 4 D€ : :
P ing section.

Evidently, the strong mean shear decreases the threshold
of the C0I|TS'[I’etCh transition \_/ery_3|gn|f|c_antly, by a factor_of IV ACTIVE REGIME OF THE POLYMER STRETCHING
D€?. The important conclusion is that in the entire region
below the thresholdE<ZE., the renormalization of the In this section we continue the discussion of the case of
Deborah number can be safely neglected: homogeneous turbulence with mean shear, but allow for su-
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percritical levels of turbulent fluctuations, at which the poly- Db 1 ~,

mers are strongly stretched. In that case they can no longer Dt =" 7b+ So-b= 7% + N, (4.49

be considered as a passive field that does not affect the tur- P

bulent fluctuations. In thisactive regime of the polymer where

stretchingone cannot use E@3.2) for the cross-correlation

tensorQ; of the turbulent velocity field(r,t) and polymeric R=-v S | P (4.40
stretching#(r,t). In the present section we reconsider the

v-TT correlations and show that in the gctive regime they are N,=-V -vv, N,= V@, (4.40
determined by the so-calledydroelastic wavesvhich are

involved in transforming turbulent kinetic energy into poly- The linearized version of Eq§4.48—(4.4@ gives rise to hy-
mer potential energy and vice verg&11,15. Therefore in  droelastic wave$9,11,15 with an alternating exchange be-
order to findQy in the active regime we need first to recon- tween the kinetic energy of the carrier fluid and the potential
sider the basic properties of the hydroelastic waves themenergy of the polymeric subsystem. In the simplest case of
selves. This is done in Secs. IV A and IV B. In Sec. IV A we space-homogeneous turbulent megia mean shea,=0)
demonstrate that the coupled E¢$.48—(4.4¢ for v and7  the homogeneous Eq&t.43—(4.4e have plane wave solu-
give rise to propagating hydroelastic plane waves tions, cf. Eqs(4.13—(4.10.

When the mean shear exists it appears in E4sia—

Vi by o expli(k -1 = axd) = ud] (4.13 (4.4e with a characteristic frequencg,. In the region of
with the dispersion laww, and dampingy,: parameters that we are interestedSgjs much smaller than
JE— the wave frequency,, but much larger than the wave damp-
o =V(k -y k), (4.10  ing frequencyy,. This means that the shear does not affect
the wave character of the motion, but it can change the ef-
11 5 fective damping of the plain wave with a given wave vector
=5 :p + vok” . (4.10 k. Indeed, due to the linear inhomogeneity of the mean ve-

locity (constant shearthe wave vector becomes time depen-
Note that Eq.(4.1b reduces to the form in Refll] (wx  dent according to

«|(R)-k|) when the tensoﬂg is decomposed to the product
structure dk STk, (4.5

. dt
IT§ = (RR;) — (RXRy). (4.2) " T % e shear § G

. N : . is means that in the casg> v, the shear frequenc
This approximation, Wh'Ch doe; hot take into account theserves as an effective decorrelation frequency insteag:of
correlations of fluctuations of different components of the
tensorlly, is not important for the purposes of REf1]. Itis y.O y=bS, (4.6)
not appropriate in our context; for example the component
I1%Y, which vanishes in the approximati®#.2), is crucial in ~ whereb is the dimensionless constant of the order of unity.
transporting mechanical momentum to the wall. We reiterate that the limit D& 1 is consistent with the

For large shear, De 1, these wave$with the exception frequency of the hydroelastic waveg being much larger
of those propagating exactly in the streamwise direcéipn than their effective damping.
have high quality factor:w,>vy,. The desired cross-

correlation tensoQy is defined by the polarization of the B. Polarization of hydroelastic waves
hydroelastic waves, that is the subject of Sec. IV B. In Sec. ) ,
IV C we derive the following equation for tens@: The formal solution of the linear Ec§4.4c) for b can be
i Kk written in terms of the Green’s functio@,
L =BG, (4.3 ) o
- 2102
that is very similar to the corresponding E@®.2) in the b=-7(Gp+ S - G)) A%, (4.79
passive regime. However, in Eg4.3) the proportionality
tensorE,, given by Eq.(4.123, is very different from the ~ (D 1\*
corresponding tenscg,,sin the passive regime. Gp= Dt :p : (4.7
A. Frequency and damping of hydroelastic waves Denoting byF,(t,r) the result ofn-fold action ég on the
Equations(2.99—2.99 for the vectorv andtensorsr can ~ function f(t,r),
be reformulated in terms of a nevector. ~
Fa(t,r) = Gof(t,r), 4.8
b=7V -m, (4.49 (b0 ol (L.1) (4.89
instead of the tenso#r. The new equations read one writes
* T
%:‘So'v"'voAv—Vp*')/pb"'Nv, (4.4b) Fl(t,r)=J de(t—T,r—SO-rT)eXp<—:>,
0 p
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o -1
Fn(t,r)=f dTilf(t—r,r—So-rT)exp(—1>.
0 )!

(n—= Tp
(4.8b

By straightforward calculations one can show té@tsat—
isfies the following commutative relationship:
G V-VG,=5-GV. (4.9)

Using this relation in Eq(4.73 repeatedly we can rewrite
as

b=7[(G,V I V)+Sy (G2V M- V)o
=7[(V Iy G, V) +(V - Sy 1y G2 V)

+Sp (V- G2V) +25, (V- So- Ty - GV ).
(4.10

This is an exact relationship for the polarization of the hy-

PHYSICAL REVIEWT, 016305(2005

EiM() O oM7), o=E(©),

(4.133

f(7) = cofw7) exp(— y7). (4.13b

Note that the assumption here is thaandy do not depend
on the tensor indices. This is a simplifying assumption
that does not carry heavy consequences for the qualitative
analysis.

Under these assumptions the tenggfsn Eq.(4.123 can
be estimated as follows:

ik = f ik (4.143
“dr p( r) Re(y+iw)"
= f - ==
= e (e ) (F+0dn
(4.14b
Y 1 3’)/

droelastic waves in the presence of mean shear, and it will be

used in the analysis of the cross-correlation ter@dpr

C. General structure of the cross-correlation tensor

The cross-correlation tens@y Eq. (2.49 can be rewrit-
ten in terms of the vector field as follows:
1
Qr=-—(vb+hv). (4.1
Tp
Substituting the vectadp from Eq.(4.10 into Eq.(4.11) one
finds that the cross-correlation tend@s is proportional to
the elastic stress tensbk,, according to Eq(4.3), in which

At this point we need to estimate. From Eq.(4.1b we see
that we need to take the largest of componentlgf and
smallest availablé& vector which will be denoted ak,,.
Since we expect th&x component ofll, to be the largest
component, we write

W= \’ﬁkain- (4.15

We should note at this point that homogeneous turbulence
has no inherent minim&t vector, since there is no natural

scale. In reality there is always an outer scale which is de-
termined by external constraints. For further progress in the
analysis of the structure of the cross-correlation tensor one

the proportiona”ty tensoEact is expressed in terms of the needs to _SpEC_ify the outer Scal.e of turbulence. To this end we
second-order correlation functions of the velocity gradientsWill consider in the next section homogeneous turbulence

as follows:
=ikl — =ijkl o =ikl ik =ik T Kk
Bk =EM+EM+ B+ ENS
=D = =T
+HSEI S ELY)
il —ii k| i’ —ii'K'| K
+2ag B+ EENS). (4129
Here E,, are time-integrated tensors defined as follows:

o -1
= = [ 97 E(r)exp(—l), (4.12b

"~ J, (n-1) T

. ! J -7 '

andr’'=r—7Sy-r.
In order to estimate the relative importanceshf, =, and
E4in Eq. (4.123 notice that the integrals in E¢4.12h are

with a constant shear as an approximation to wall bounded
turbulence of polymeric solution in the region of logarithmic
mean velocity profile.

V. POLYMER STRETCHING IN WALL BOUNDED
TURBULENCE

In this section we consider turbulent polymeric solutions
in wall bounded flows, and show that the elastic stress tensor
takes on the universal forifl.29—(1.29. This implies very
specific dependence of the components of the elastic stress
tensor on the distance from the wall. The theoretical predic-
tions will be checked against numerical simulations and will
be shown to be very well corroborated. Since we are inter-
ested in drag reduction we must consider here the active
regime when the polymers are sufficiently stretched to affect
the turbulent field. As mentioned before, large drag reduction
necessarily implies De 1. For concreteness we restrict our-
selves by considering the most interesting logarithmic-law

dominated by contributions from the longest hydroelasticregion. Extension of our results to the entire turbulent bound-
waves in the system. These long&stectors have a decor- ary layer is straightforward.

relation time y [which is estimated in Eq(4.6)], and are
characterized by a frequeneythat will be specified below.

A. Cross-correlation tensor in wall bounded turbulence

Using these estimates we can approximate the time depen- In this section we consider in more details ten§grfor

dence ofE"¥(7) as follows:

wall bounded turbulent flows. In this case the outer scale of
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turbulence is estimated as the distance to the wall. ThereforH,. One sees from Ed5.59 that although the tensdi, is

in Eq. (4.15 ki~ 1/y wherey is the distance to the wall. strongly anisotropicits components differ by powers of De
Also we can use the fact that in the turbulent boundaryonce contracted with the tenset' X of a general form, it

layer the mean velocity has a logarithmic profile for bothgives a tensoB with components of the same order in De.

Newtonian and viscoelastic flowgvith slopes that differ by Then Eq.(5.5b implies that the cross-correlation ten<gy

approximately a factor of)5 Therefore the mean she§gis  has components that are all of the same order in De. This

inversely proportional to the distance to the wland can  result is even stronger than the assumpt@i3 in our deri-

be estimated as vation (that we needed to recapture self-consistentiav-
— ing done so we can conclude that the elastic stress tdhgor
. f has the universal tensorial structure given by Hs23—
S=-, CRUNN

here is the total fl f th hanical tUfo Armed with this knowledge we observe that the leading
where /= Is the total flux of the mechanica mor,nen Ufor contribution toB on the RHS of Eq(5.5a is given bylII§
example, in the channel of half width equal top’L, where =2 DL

= ¥

p’ is the pressure gradient in the streamwise diregtion

Another well established fact is that when the effect of Bl = o/l [1¥= 2 Do’ ™1Y. (5.6
drag reduction is large, the momentum flux toward the wall ) _ i x i
is carried mainly by the polymers. Then, H&.8) gives According to definition(4.129 thg tensow! **=E""%0) can
be evaluated asW!/y?, wherey is the outer scale of turbu-
Y =P = (Sy)?. (5.20  lence(and distance to the wajlthe Reynolds stress tensat

. was defined by E(2.7), and a new dimensionless constant
To estimate the frequendyt.15 we need to handle the is of the order of unity. Thus one has

other component of the elastic stress tensor. Examining Egs.
(2.12D in the limit De> 1 we will make the assumption that Bi = 2¢ DeZWJ'HgV/y? (5.6b
the inequalitieg2.13 hold also in the strongly active regime. ) . )
This assumption will be justified self-consistently below. It NOW we can write an explicit equation f@r:
then follows immediately that - 1
(S)? Qr= d;%H%y W= IW- R+ RW-9)1 1, (5.7)
Mo~ Iy~ De(Spy)?, MY == —2—_ (5.3
De whered=4b c/a’.

Now we can estimate the characteristic frequency of hy-

droelastic waves in Ed4.15 as follows: B. Explicit solution for the polymeric stress tensor

»=a\DeS, (5.9 Having Eq.(5.7) for Qr in terms ofII, andW we can find

an explicit solution for the mean elastic stress terldgrin

the presence of intensive turbulent velocity fluctuations and
pected. strong shear. As a first step in Eg.4b) for Q we neglect the

Next we can continue the analysis of the cross-correlatioffduilibrium termlle/ 7, since it is expected to be much
tensor in wall bounded turbulence. Using the estiméted smaller thanQy, which stems from turbulent interactions.

where the dimensionless parameter 1. One sees thab
indeed is much larger than=b S, Eq. (4.6), as we ex-

; Then we substituteQ=Q¢ into Eq. (2.11) [or into Eq.
4.14), and(5.4), we notice that T ; .
4.19 4 (2.123] and solve the resulting equations. To leading order
B, =S5, = SDeE;> S5 in De=S7,>1 (in each componehthis solution takes the

Therefore one can neglect terms wih on the RHS of Eq. form Eqgs.(1.29+1.29 with
(4.129. Moreover, we can further simplify E¢4.123, tak- C =WAWW, (5.8
ing into account that the solution of the system of Egs.

Notice that in our approach the “constant” shear has to be
2.49—2.40 and(4.123 preserves the structure of polymer .
étre?s_(tensdoﬁ’z.lz(b in \?vtﬁ)ich %> I1Y. This allows gneyto understood as a local-dependent shear in the turbulent

neglect the two last terms in the first line of the RHS of Eq.channel flow, according to E¢5.1). Correspondingly, the

(4.123, where onlySY+ 0. After that the cross-correlation Deborah number also becomesiependent.
tensorQy, given by Eq.(4.3 in terms of tensol=,., EQ.

!’P
(4.123, can be represented via the second order tensor Ded Dely) = S(y) 7, = \—Tp. (5.9
B = ¢/l 11§ (5.5a ’
Now Egs.(5.2) and(5.3) provide an explicit dependence of
as follows: the components of tensdl, on the distance from the wall:
Qr= [b(B+B) - (B-§)X~X(B-9)]. (5.5 s P
T a?Desy C o= Iy = v
Recall that we are looking for the tensorial structure of the
cross-correlation tensdpy in order to find the structure of Iy =11§* = P,
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’/_
Py

Tp

Yy = 1157 = (5.10 0.04

At this point we can summarize our procedure as follows.
First, we assumedhat theQ tensor is not strongly aniso-
tropic such that weak inequaliti€®.13 are valid. This al- i
lowed us to use the universal forth.29—(1.29 of tensorll, 0.02
in actual calculations ol the cross-correlation functio@-.
Then we demonstrated th@%; indeed satisfies the required
inequalities(2.13. This means that Eq$1.28—(1.20 pre-
sentsa self-consistent solution of the exact equationshe caf L —
limit De— o0, The described procedure does not guarantee 0.004+—- : T r
that Eqs(1.28—(1.2¢ arethe only solutiorof the problem at 0 A0 8 . 120 160
hand. However, we propose that this solution is the realized
one, and we will check it next against numerical simulations. FIG. 1. Comparison of the DNS data R¢20] for the mean
profiles of Ry, and 10x Ry, the components of the dimensionless
conformation tensor, with analytical predictions. In our notation
I = vgpR5, R / (T,R%,). Black squares: DNS data for the stream-

Armed with the structure Eqg$1.28—1.20 of the poly-  wise diagonal componer,,, that according to our theory, Egs.
meric stress tensor, we can rewrite the equation of the mg5.10, has to decrease asylwith the distance to the wall. Black

/
; ©0%00 WY
() %,
]

C. Effective polymeric viscosity

chanical balanc€2.8) as follows: solid line: the function 1y*. Red empty circles: DNS data for the
W wall-normal component 1), for which we predicted a linear in-
P=voSH- WY+ TpHo S. (5.19) crease withy* in the log-law turbulent region. Red dashed line:

: +
This means that the polymeric contribution to the momenturr%Inear dependencesy”.

flux (last term on the RHS of this equatijooan be consid- )
ered as an “effective polymeric viscosity}, rate ofenergy exchangbetween subsystems is much larger

than the rate o€nergy dissipation

vo v+ vy, vp= 1plIY. (5.12a
Using Eqg.(5.10 one gets universdlr,-independentlinear D. Comparison with DNS data

dependence ofy, The tensorial structure of the polymer stress tensor was

vy = 5y (5.12h studied in fair detail in DNS for channel flows in variou_s

papers; see Ref§17-21] and references therein. The main
as was suggested in R¢f.2] (and see also Ref16)). problem is that the large Re regime at which the universal
The polymeric contribution to the rate of turbulent energyMDR [2] is observed is hardly available. In these DNS the
dissipation has the form maximal available De was below 100 at the wall, decreasing

to about 10 in the turbulent sublayer. For these conditions
only up to 50-60 % of the total momentum flux is carried by
the polymers. Nevertheless, we can compare our analytical
, ) ) results for De—~«~ with DNS at moderate De, at least on a
see Eq(A3e) in the Appendix. Using here E@5.7) one gets qualitative level.
dr 1 The most frequently studied object i&,=Tr{Ily}. This
er = —EH%V[ZK - —VVXV], (5.14  object is dominated by the streamwise comporié§it see,
P2y b Fig. 12 in Ref.[17], Fig. 5.3.1 in Ref[18], Fig. 6 in Ref.
[21], etc. The accepted result is thHf, decreases in the
turbulent layer. Our Eq95.10 predictllyoc1/y in this re-
ion. This rationalizes the DNS observations in Refs.
17,18,20,21. As an example, we present in Fig. 1 by black
squares the DNS data of RE20] for the largest, streamwise
componentlIy* and plotted by the solid black line the ex-

er,= Tr(s-II) = %Tr{QT}, (5.13

whereKzéTr{W} is the density of the turbulent kinetic en-
ergy. Having in mind that in the MDR regim&”Y=K, hav-
ing the same dependence on the distance from the wall, E
(5.14 can be rewritten in terms of the effective polymeric
viscosity v, given by Eqs(5.123 and(5.12h:

&7 = ,,p<| v ul?, (5.15 pected[see Eqs(5.10] profile «<1/y*. In spite of the fact
P that the MDR asymptote with the logarithmic mean velocity
where(|Vu[?) was estimated al</y?. profile is hardly seen in that DNS, the agreement between the
Notice that the naive estimate for the effective polymericDNS data and our prediction is obvious.
viscosity isv,= 7yll,, which exceeds our resulb.123 and The effective polymeric viscosity was measured, for ex-

(5.12b by a factor of D&. The reason for this difference is ample, in Ref[17], Fig. 5, and in Ref[18]. In these Refs.
the wave character of the fluid motion; the naive result isv,(y) was understood ad(y)/S(y), where Ay(y) is the
valid for the estimate of the characterisiitstantaneougn-  Reynolds stress deficit, which I$}” according to Eq(2.8).

ergy flux. As usual in high quality waves or oscillations, the The observations of Reff17,18 are thatw(y) in the turbu-
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lent boundary layer grows linearly with the distance from the ACKNOWLEDGMENTS
wall. Recent data of DNS of the Navier-Stokes equation with

polymeric additives(using the FENE-P modetaken from was supported in part by the U.S.-Israel Binational Science

Ref. [20] are presented in Fig. 1. The wall-normal compo- . L X
nentIT¥’ is presented by the red empty circles. One sees thaFtoundatlon, by the European Commission via a TMR grant,

(in the quite narrow region 20<y*< 60 (where the mean and by the Minerva Foundation, Munich, Germany.
velocity profile is close of MDR the profileIT¥ is indeed
proportional toy*, as represented by the red dashed line. This
is in agreement with our result; see E¢.12hH and our
Ref. [12]. In this appendix we present exact energy balance equa-

Direct DNS of other components of the polymeric stresstions that are useful in the analysis of turbulence of the poly-
tensor, see, e.g., Fig. 6 in R4R0], also agrees with the meric solutions. In the present study we employ only one of
tensorial structure ofl, given by Eqs.(5.10. them, i.e., Eq(A3e).

Introduce the mean densities of the turbulent kinetic en-
ergy Er and polymeric potential enerdy,,

We thank Roberto Benzi for useful discussions. This work

APPENDIX: EXACT ENERGY BALANCE EQUATIONS

VI. SUMMARY AND DISCUSSION

The aim of this paper was the analysis of the polymer Er= EW, W= Tr{w}, (Ala)
stress tensor in turbulent flows of dilute polymeric solutions. 2
On the face of it this object is very hard to pinpoint analyti-
cally, being sensitive to complex interactions between the
polymer molecules and the turbulent motions. We showed,
nevertheless, that in the limit of very high Deborah numbers, ) ] ]
De>1, this tensor attains a universal form. Increasing the Using Egs.(2.18—~(2.19 one can derive equations for the
complexity of our turbulent ensemble, from laminar, throughPalance ofer andE; and for their sum
homogeneous turbulence with a constant shear, and ending DE;

1
Ep = Eno, HO = Tr{Ho} (Alb)

up with wall bounded anisotropic turbulence, we proposed a =gr—&7- erp=0, (A2a)

universal form Dt
2DE(y) D 0
V) Dey) D5 =g, —g,+er,=0 (A2Db)
M(y) =TP(y)| Dely) 1 0 |. (6.2 Dt o e ten=U,
0 0 Cly
. . . : D -
We rewrite this form here to stress that it remains un- E(ET +Ep) =eT+e,—e7-¢,=0. (A2c)

changed even when the Deborah number, and with it the
components of the tensor, become space dependent. ObVjze genote byt ande? the energy flux from the mean flow

ously, this strong result is expected to hold only as long a$, the turbulent and polymeric subsystem, respectively:
the mean properties, including the mean shear, vary in space

in a controlled fashion, as, for example, in the logarithmic 1= —SWY, (A3a)
layer near the wal(be it a Karman or a Virk logarithjn
As an important application of these results we considered 8; = SIIY; (A3b)

in Sec. V the important problem of drag reduction by poly-
mers in wall bounded flows. A difficult issue that caused aet describes the dissipation of energy in the turbulent sub-
substantial confusion is the relation between the polymeBystem, whereas, is the dissipation in the polymeric sub-
physics, the effective viscosity that is due to polymer stretchsystem due to the relaxation of the stretched polymers back
ing, and drag reduction. In recent work on drag reduction itto equilibrium:
was shown that the Virk logarithmic maximum drag reduc-

- T
tion asymptote is consistent with a linearly increasimngth &7 = 1TH(s s), (A3c)
y) effective viscosity due to polymer stretching. This result 1
seemed counterintuitive since numerical simulations indi- ey =——Tr(lly~Ilgy). (A3d)
cated that polymer stretching is decreasing as a functign of s

The present results provide a complete understanding of thLFhe last term on the RHS of EqgA2a) and (A2b) [that is

conundrum. “Polymer stretching” is dominated Hy" since . ;
it is much larger than all the other components of the stres bsent in Eq(AZc)] describes the energy_ exchange between
e polymeric and turbulent subsystems:

tensor. As shown above, this component is indeed decreasi
wheny increases, cf. Fig. 1. On the other hand, the effective 1

viscosity is proportionall¥’, and this component is indeed erp=TKs m)= ETr{QT}- (A3e)
increasinglinearly) with y, cf. Fig. 1. In fact, drag reduction

saturates precisely wheiy‘ and IT}¥ become of the same Using the expression for the momentum flux, we obtain an
order. exact balance equation for the total energy,
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E=Ey+Er+E, (Ada) the choice of the origin of coordinates. The LHS of Eqg.
(A4b) describes the work of external forces needed to main-
tain the constant mean shear. The first term on the RHS
1 (x1/7,) describes the energy dissipation in the polymeric
SP= Z—Tf(ﬂo‘ ey + vo(§+Tr(s-s"). (Adb)  subsystem. The term,SZ represents the viscous dissipation
o due to the mean shear, while the last term on the RHS is
In Eq. (Ada) Ey is the density of the kinetic energy of the responsible for the viscous dissipation caused by the turbu-
mean flow, defined up to an arbitrary constant, depending otent fluctuations.

that in the stationary state reads
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