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The interaction of polymers with turbulent shear flows is examined. We focus on the structure of the elastic
stress tensor, which is proportional to the polymer conformation tensor. We examine this object in turbulent
flows of increasing complexity. First is isotropic turbulence, then anisotropicsbut homogenousd shear turbu-
lence, and finally wall bounded turbulence. The main result of this paper is that for all these flows the polymer
stress tensor attains a universal structure in the limit of large Deborah number De@1. We present analytic
results for the suppression of the coil-stretch transition at large Deborah numbers. Above the transition the
turbulent velocity fluctuations are strongly correlated with the polymer’s elongation: there appear high-quality
“hydroelastic” waves in which turbulent kinetic energy turns into polymer potential energy and vice versa.
These waves determine the trace of the elastic stress tensor but practically do not modify its universal structure.
We demonstrate that the influence of the polymers on the balance of energy and momentum can be accurately
described by an effective polymer viscosity that is proportional to the cross-stream component of the elastic
stress tensor. This component is smaller than the streamwise component by a factor proportional to De2. Finally
we tie our results to wall bounded turbulence and clarify some puzzling facts observed in the problem of drag
reduction by polymers.
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I. INTRODUCTION

The dynamics of dilute polymers in turbulent flows is a
rich subject, combining the complexities of polymer physics
and of turbulence. Besides fundamental questions there is a
significant practical interest in the subject, particularly be-
cause of the dramatic effect of drag reduction in wall
bounded turbulent flowsf1–4g. On the one hand, the polymer
additives provide a channel of dissipation in addition to the
Newtonian viscosity; this had been stressed in the past
mainly by Lumleyf5,6g. On the other hand, the polymers can
store energy in the form of elastic energy; this aspect had
been stressed, for example, by Tabor and de Gennesf7g. A
better understanding of the relative roles of these aspects
requires a detailed analysis of the dynamics of the “complex
fluid” obtained with dilute polymers in the turbulent flow
regime.

Some important progress in the theoretical description of
the statistics of polymer stretching in homogeneous, isotro-
pic turbulence of dilute polymer solutions was offered in
Refs. f8–10g. Here we want to stress the fact that in the
practically interesting turbulent regimes, and in particular
when there exists a large drag reduction effect, the charac-
teristic mean velocity gradientssay, the mean shearS0d, is
much larger than the inverse polymer relaxation time,tp,
S0tp@1. Usually this parameter is referred to as the Deborah
or Weissenberg number:

De; Wi ; S0tp. s1.1d

Indeed, the onset of drag reduction corresponds to Reynolds
number Recr at which De,1. Large drag reduction corre-
sponds to Re@Recr at which De.Re/Recr@1.

The aim of this paper is to provide a theory of the poly-
mer stress tensorP fdefined in Eq.s2.1bdg in turbulent flows
in which De@1. The main result is a relatively simple form

s1.2ad of the mean polymer stress tensorP0 that enjoys a
high degree of universality. Denoting byx̂ and ŷ the unit
vectors in the mean velocity and mean velocity gradient di-
rectionssstreamwise and cross-stream directions in a channel
geometryd and byẑ= x̂3 ŷ the spanwise direction, we show
that tensorP0 has a universal form:

P0 . P0
yy12 De2 De 0

De 1 0

0 0 C
2 for De@ 1. s1.2ad

One sees that in thesx̂-ŷd plane the tensorial structure ofP0

is independent of the statistics of turbulence:

P0
xx = 2 De2P0

yy, P0
xy = P0

yx = De P0
yy. s1.2bd

Due to the symmetry of the considered flows with respect to
reflectionz→−z, the off-diagonal componentsP0

xz and P0
yz

vanish identically:

P0
xz= P0

yz= 0. s1.2cd

The only nonuniversal entry in Eq.s1.2ad is the dimension-
less coefficientC. We show thatC=1 for shear flows in
which the extension of the polymers is caused by tempera-
ture fluctuations and/or by isotropic turbulence. For aniso-
tropic turbulence the constantC is of the order of unity.

The universal tensorial structures1.2ad–s1.2cd has impor-
tant consequences for the problem of drag reduction in dilute
polymeric solutions. We show that the effect of the polymers
on the balance of energy and mechanical momentum can be
described by an effective polymer viscosity that is propor-
tional to the cross-stream component of the elastic stress ten-
sor P0

yy. According to Eq.s1.2bd this component is smaller
than the streamwise componentP0

xx by a factor of 2 De2.
This finding resolves the puzzle of the linear increase of the
effective polymeric viscosity with the distance from the wall,
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while the total elongation of the polymersfdominated by the
largest componentP0

xx of the tensors1.2adg decreases with
the distance from the wall. We show that our results for the
profiles of the componentsP0

i j are in a good agreement with
direct numerical simulationsDNSd of the finitely extensible
nonlinear elastic–Peterlin’s versionsFENE-Pd model in tur-
bulent channel flow.

The paper is organized as follows. In Sec. II A we present
the basic equations of motion of the problem. In Sec. II B we
describe the standard Reynolds decomposition of the equa-
tions of motion for the mean and fluctuations of the relevant
variables. In Sec. II C we find general solution forP0 and
formulatesthe very weakd conditions at which it simplifies to
the universal forms1.2ad–s1.2cd.

In Sec. III we analyze the phenomenon of polymer
stretching in shear flows with prescribed turbulent velocity
fields, either isotropic, Sec. III B, or anisotropic, Sec. III C.
We relate the value ofC to the level of anisotropy in the
turbulent flow. We also show in this section that a strong
mean shear suppresses the threshold value for the coil-
stretched transition by a factor De2, see Eqs.s3.10ad and
s3.10bd.

Sections IV and V are devoted to the case of strong tur-
bulent fluctuations for which the fluctuating velocity and
polymeric fields are strongly correlated. In Sec. IV we con-
sider the case of homogeneous shear flows. In Sec. V we
discuss wall bounded turbulence in a channel geometry,
compare our results with available DNS data and apply our
finding to the problem of drag reduction by polymeric solu-
tions.

Section VI presents summary and a discussion of the ob-
tained results.

The Appendix offers some useful exact relationships for
the energy balance in the system.

II. EQUATIONS OF MOTION AND SOLUTION FOR
SIMPLE FLOWS

A. Equations of motion for dilute polymer solutions

The equation for the velocity field of the complex fluid
reads

] V

] t
+ sV · = dV = n0DV − = P + = · P,

= ·V = 0. s2.1ad

HereV;Vst ,rd, P; Pst ,rd andn0 are the fluid velocity, the
pressure, and Newtonian viscosity of the neat fluid, respec-
tively. The fluid is considered incompressible, and units are
chosen such that the density is 1. The effect of the added
polymer appears in Eq.s2.1ad via the elastic stress tensor
P;Pst ,rd.

In this paper we consider dilute polymers in the limit that
their extension due to interaction with the fluid is small com-
pared with their chemical length. In this regime one can
safely assume that the polymer extension is proportional to
the applied forcesHook’s lawd. We simplify the description
of the polymer dynamics assuming that the relaxation to

equilibrium is characterized by a single relaxation timetp,
which is constant at small extensions. In this caseP can be
written as

Pst,rd ;
n0p

tp
Rst,rdRst,rd, s2.1bd

wheren0p is polymeric viscosity for infinitesimal shear, and
R is the polymer end-to-end elongation vector, normalized
by its equilibrium valueReq sin equilibrium RR=dd. The
average in Eq.s2.1bd is over the Gaussian statistics of the
Langevin random force which describes the interaction of
the polymer molecules with the solvent molecules at a given
temperature, but not over the turbulent ensemble.

The equation for the elastic stress tensorP has the form

] P

] t
+ sV · = dP = S · P + P ·ST −

1

tp
sP − Peqd,

S; s=VdT, Sij = ] Vi/] xj , s2.1cd

Peq= Peqd, Peq; n0p/tp.

HereS;Sst ,rd is the velocity gradient tensor andd is unit
tensor.

Choice of coordinates. In this paper we consider both ho-
mogeneous and wall bounded shear flows. In both cases we
choose the coordinates such that the mean velocity is in thex̂
direction and the gradient is in theŷ direction. In wall
bounded flowsx̂ andŷ are unit vectors in the streamwise and
the wall normal directions:

V0 ; kVl = S0 · r, S0 ; S0x̂ŷ,

only V0
x = S0y Þ 0 and S0

xy = S0 Þ 0. s2.2d

The unit vector orthogonal tox̂ andŷ sthe spanwise direction
in wall bounded casesd is denoted asẑ.

B. Reynolds decomposition of the basic equations

In the following we need to consider separately the mean
values and the fluctuating parts of the velocityVsr ,td, the
velocity gradientSsr ,td, and the elastic stress tensorPsr ,td
fields. We define the fluctuating parts via

V = V0 + v, S= S0 + s, P = P0 + p,… . s2.3d

All the mean quantities will be denoted with a 0 subscript
se.g., the mean velocityV0d, and all the fluctuating quantities
by the lower-case lettersv ,p,p ,s, etc. These mean values
are computed with respect to the appropriate turbulent en-
semble. Note that the mean pressure in a homogeneous shear
flow is zero,P0=0, and all mean quantitiessexcept the mean
velocity V0

x=S0y, of coursed are coordinate independent and,
by definition, time independent.

1. Equations for the mean objects

a. The equation for the mean elastic stress tensorP0 fol-
lows from Eq.s2.1cd:
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S D

Dt
+

1

tp
DP0 = S0 · P0 + P0 ·S0

T + Q, s2.4ad

Q ;
1

tp
Peq+ QT, s2.4bd

QT ; ks · p + p ·sTl, s2.4cd

wherePeq is given by Eq.s2.1cd, andk¯l denotes an aver-
age with respect to the turbulent ensemble. In components:

S D

Dt
+

1

tp
DP0

i j = S0
ikP0

kj + S0
jkP0

ki + Qij ,

Qij =
1

tp
Peqd

i j + ksikpkj + sjkpkil. s2.4dd

HereD /Dt is the mean substantial time derivative

D

Dt
;

]

] t
+ V0 · = =

]

] t
+ S0y

]

] x
. s2.5d

The substantial derivative vanishes in the stationary case,
when all the statistical objects aret andx independent.

b. The equation for the mean velocityfollows from
Eq. s2.1ad:

] V0

] t
=

]

] y
fn0S0 − Wxy + P0

xyg, s2.6d

whereW is the Reynolds stress tensor:

Wij ; kviv jl. s2.7d

In the stationary case]V0/]t=0 and Eq.s2.6d gives

n0S0 − Wxy + P0
xy = P, s2.8d

where constant of integrationP has a physical meaning of
the total momentum flux. The three terms on the left-hand
side sLHSd of Eq. s2.8d describe the viscous, inertial, and
polymeric contributions toP. In a homogeneous-shear ge-
ometry all these terms arey-independent constants, whereas
in a channel geometry they depend on the distance to the
wall. Notice that Eq.s2.8d also can be considered as an equa-
tion for the balance of mechanical forces in the flow.

2. Equations for the fluctuations

The equations for the fluctuating partsv andp read

Dv
Dt

= − S0 ·v + n0Dv − = p + = · sp − vvd, s2.9ad

S D

Dt
+

1

tp
Dp = S0 · p + p ·S0

T + s · P0 + P0 ·sT + Fp,

s2.9bd

where= ·v=0, and

Fp ; ss · p + p ·sTd, − = ·vp. s2.9cd

Here s¯d, denotes the “fluctuating part of”s¯d.

C. Solutions for simple flow configurations

1. Implicit solution for shear flows

Note that the mean shear tensorS0 satisfies, besides the
incompressibility condition TrhS0j=S0

ii =0, one additional
constraint,

S0
i jS0

jk = 0. s2.10d

Remarkably, this property ofS0 uniquely distinguishes shear
flows from other possibilitiesselongational or rotational
flowsd: if Eq. s2.10d holds, one can always choose coordi-
nates such that the only nonzero component ofS0 is S0

xy

=S0.
Having Eq. s2.10d consider Eq.s2.4ad in the stationary

state:

P0 = tpsS0 · P0 + P0 ·S0
T + Qd. s2.11d

We can proceed to solve this equation implicitly, treatingQ
on the right-hand sidesRHSd as a given tensor, and solve the
linear set of equation forP0. In the considered geometry Eq.
s2.11d is a system of four linear equations, and the solution is
expected to be quite cumbersome. However, propertys2.10d
allows a very elegant solution of this system. Using Eq.
s2.11d iteratively si.e., substituting instead ofP0 on the RHS
of Eq. s2.11d the whole RHSd, we get

P0 = 2tp
2S0 · P0 ·S0

T + tp
2sS0 ·Q + Q ·S0

Td

+ tpQ + tp
2fS0

2 ·Q + Q · sS0
2dTg.

One sees that due to Eq.s2.10d the last term in this equation
vanishes. Repeating this procedure once again, we obtain the
exactsolution of Eq.s2.11d in the form of a finitesquadraticd
polynomial of the tensorS0:

P0 = 2tp
3S0 ·Q ·S0

T + tp
2sS0 ·Q + Q ·S0

Td + tpQ.

s2.12ad

The individual components of the solution Eq.s2.12ad are
given by

P0
xx = tps2 De2Qyy + 2 DeQxy + Qxxd,

P0
xy = tpsDe Qyy + Qxyd,

P0
yy = tpQ

yy, P0
zz= tpQ

zz,

P0
xz= P0

yz= 0. s2.12bd

Notice that thexzandyzcomponents ofP0 vanish due to the
symmetry of reflectionz→−z, which remains relevant in all
the flow configurations addressed in this paper.

In the limit De@1 the tensorial structures2.12bd can be
simplified to the forms1.2ad–s1.2cd if

Qxy ! De Qyy, Qxx ! De2 Qyy. s2.13d

Indeed, in this case one can neglect the last two terms inP0
xx

and the second term inP0
xy and obtain Eqs.s1.2ad–s1.2cd

with C=Qzz/Qyy.
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2. Explicit solution for laminar homogeneous shear flows

The solutions2.12ad and s2.12bd allows further simplifi-
cation in the case oflaminar shear flow, in whichQT of Eq.
s2.4cd vanishes,QT=0, and thus, according to Eqs.s2.1cd
and s2.4bd, the tensorQ becomes proportional to the unit
tensor:

Qij =
Peq

tp
di j . s2.14d

With this relationship Eq.s2.12ad simplifies to

P0 = Peq12De2 + 1 De 0

De 1 0

0 0 1
2 . s2.15d

Equations2.15d, in which Peq is given by Eq.s2.1cd, is
important in itself as anexplicit solution forP0 in the case of
laminar shear flow. But more importantly, this equation to-
gether with Eqs.s2.12ad and s2.12bd gives a hint regarding
the tensorial structure ofP0 even in the presence of turbu-
lence, when the coupling between the velocity and the poly-
meric elongation field, leading to the cross correlationQT,
cannot be neglected.

To see why the simple results2.15d may be relevant also
for the turbulent case, note first that the nondiagonal ele-
ments withz projection, i.e.,P0

xz andP0
yz, are identically zero

in general as long as the symmetryz→−z prevails. Second,
for large Deborah numbers, De@1, the nonzero components
in both Eqs.s2.12bd ands2.15d have three different orders of
magnitude:P0

xx@P0
xy@P0

yy.Pzz. In other words, the tensor
P0 is strongly anisotropic, reflecting a strong preferential
orientation of the stretched polymers along the streamwise
direction x̂. The characteristic deviation anglesfrom the x̂
directiond is of orderOs1/Ded.

Notice that Eqs.s2.12ad and s2.12bd relate the polymeric
stress tensorP0 to the cross-correlation tensorQT, Eq.
s2.4cd. In its turn this tensor depends on the polymeric
stretching, which is described by the same tensorP0. There-
fore, generally speaking, Eqs.s2.12ad ands2.12bd remain an
implicit solution of the problem, which in general requires
considerable further analysis. However, as we discussed
above, Eq.s2.12ad is more transparent than the starting Eqs.
s2.4ad–s2.4dd. In particular, if the tensorQ is not strongly
anisotropic, the tensorial structure ofP0 is close to Eq.
s2.15d for the laminar case. We will see below that this struc-
ture is indeed recovered under more general conditions.

In the following Secs. III and IV we will find explicit
solutions for the elastic stress tensor in the presence of tur-
bulence which share a structure similar to Eq.s2.15d.
Namely, for De@1 the leading contribution to each compo-
nent ofP0 can be presented as Eqs.s1.2ad–s1.2cd, in which
C, given by Eqs.s3.13d and s5.8d, is some constant of the
order of unity, depending on the anisotropy of turbulent sta-
tistics.

III. POLYMER STRETCHING IN THE PASSIVE REGIME

A. Cross-correlation tensorQT in Gaussian turbulence

When De@1 the characteristic decorrelation time of tur-
bulent fluctuations,tcor&1/S0, is much smaller than the
polymer relaxation timetp. Accordingly the turbulent fluc-
tuations can be taken asd correlated in time:

ksijstdsi8 j8st8dl = Jpas
ii8,j j 8dst − t8d. s3.1d

This approximation is valid below the threshold of coil-
stretched transition, when the polymers do not affect the tur-
bulent statistics. This regime will be referred to as the “pas-
sive” regime. The fourth-rank tensorJpas defined by Eq.
s3.1d is symmetric with respect to permutations of the two

first and two last indices,Jpas
ii8,j j 8=Jpas

i8i,j8 j. Incompressibility
leads to the restrictionJpas

ik,jk=0. Homogeneity implies

Jpas
ii8,j j 8=Jpas

ii8,j8 j.
At this point we assume also Gaussianity of the turbulent

statistics. Then the tensorQT can be found using the Furutsu-
Novikov decoupling procedure developed in Refs.f13,14g
for Gaussian processes:

QT
ij = Jpas

i j ,kk8P0
kk8. s3.2d

The cross-correlation tensorQT is proportional to a presently
undetermined stress tensorP0. To find P0 one has to substi-
tute Eq.s3.2d into Eqs.s2.4ad–s2.4dd or into its formal solu-
tion s2.15d and to solve the resulting linear system of four
equations for the nonzero components ofP0: Pxx, Pyy, Pzz,
andPxy=Pyx.

The resulting equations are quite cumbersome. The basic
physical picture simplifies, however, in two limiting cases:
sid isotropic turbulence, Sec. III B, andsii d anisotropic turbu-
lence in the limit of strong shear, Sec. III C.

B. Isotropic turbulence

First we consider the simplest case of isotropic turbu-
lence. In this case the tensorJpas has the form

Jpas
ii8,j j 8 = JFdii8d j j 8 −

1

4
sdi jdi8 j8 + di j 8di8 jdG , s3.3d

whereJ is a constant measuring the level of turbulent fluc-
tuations. Using Eq.s3.3d in Eq. s3.2d for QT one gets

QT = JSP0d −
1

2
P0D . s3.4d

Substituting this relationship into Eq.s2.4ad one gets a closed
equation forP0:

S D

Dt
+

1

t̃p
DP0 = S0 · P0 + P0 ·S0

T + SJP0 +
1

tp
PeqDd,

s3.5ad

1

t̃p

;
1

tp
+

J

2
. s3.5bd

The stationary solution of Eq.s3.5ad has the form
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P0 = P0
yyfd + t̃psS0 + S0

Td + 2t̃p
2S0 ·S0

Tg,

P0
yy = t̃pSJP0 +

1

tp
PeqD ,

P0 ; TrhP0j. s3.6ad

In components:

P0 = P0
yy12 Dẽ2 + 1 Dẽ 0

Dẽ 1 0

0 0 1
2 , s3.6bd

Dẽ; t̃pS0 , De. s3.6cd

We see that the tensor structure ofP0 has the same form as
in the laminar case, but with an increased relaxation fre-
quency given by Eq.s3.5bd.

Taking the trace of Eqs.s3.6ad–s3.6cd, one gets the fol-
lowing equation forP0

yy:

P0
yy =

1

tp
GPeq, s3.7d

G ;
1

tp
− S2 Dẽ2 +

5

2
DJ. s3.8d

We see that the effective dampingG decreases with increas-
ing the turbulence levelJ. At some critical value ofJ=Jc,
the effective damping goes to zero,G→0, and formallyP0
→`. The critical valueJc corresponds to the threshold of
the coil-stretch transition. Substituting Eq.s3.6cd into the
threshold conditionG=0, one gets a third-order algebraic
equation forX;Jctp:

5X3 + 18X2 + 4s3 + 4 De2dX = 8. s3.9d

This equation has one real rootJc, which we consider in two
limiting cases:

s1d Small shear S0!1/tp sDe!1d. In this case the
threshold turbulence levelJc is proportional to the polymer
relaxation frequency

Jc .
2

5tp
S1 −

5 De2

9
D . s3.10ad

s2d Large shearS0@1/tp sDe@1d. In this case the
threshold velocity gradient is much smaller. Indeed,

Jc .
1

2tp De2S1 −
3

4 De2D . s3.10bd

Evidently, the strong mean shear decreases the threshold
of the coil-stretch transition very significantly, by a factor of
De2. The important conclusion is that in the entire region
below the threshold,JøJc, the renormalization of the
Deborah number can be safely neglected:

De − Dẽø
1

4 De
! 1. s3.11d

This means that the structure of the elastic stress tensor in the
passive regimes3.6bd hardly differs from the laminar case
s2.15d.

C. Elastic stress tensor in anisotropic turbulent field

Here we consider the case of strong shear, De→`, having
in mind that in the passive regime the tensorial structure of
Jpas fsee Eq.s3.3dg is independent of De. In this case the
leading contributions to each component ofP0 in Eq.
s2.12bd are

P0
xx = 2tp De2Qyy,

P0
xy = tp DeQyy,

P0
yy = tpQ

yy, P0
zz= tpQ

zz,

P0
xz= P0

yz= 0. s3.12d

This means that for De@1 P0 takes on the forms1.2ad,
s1.2bd, ands1.2cd with

C .
Jpas

yy,xx

Jpas
zz,xx . s3.13d

The threshold condition forJ can be found along the
lines of the preceding subsection. The result is that only one
component of the tensorJpas is important:

Jpas,c
yy,xx .

1

2tp De2 . s3.14d

This result coincides to leading order with Eq.s3.10bd in
which Jpas

yy,xx⇒J according to Eq.s3.3d.
Finally, we point out that the results presented in this sec-

tion remain valid for finite, but small, decorrelation time
tcor→0 in whichJ can be defined asJ;2s02tcor/15, where
s0

2;ks]aubd2l=Trks·sTl.
Notice that experimental and numerical studiesf2,4,17g

show that the level of turbulent activity in turbulent poly-
meric flows is of the same order as in Newtonian flow at the
same conditions. Simple estimations for the typical condi-
tions in the maximum drag reductionsMDRd regime, when
one observes large drag reduction, show that the parameter
J is far above the threshold values3.10bd. Therefore, poly-
mers in the MDR regime cannot be considered as passive:
there should be some significant correlations between poly-
mers and fluid motion that prevent polymers from being in-
finitely extended despite supercritical level of turbulence.
The character of these correlations is clarified in the follow-
ing section.

IV. ACTIVE REGIME OF THE POLYMER STRETCHING

In this section we continue the discussion of the case of
homogeneous turbulence with mean shear, but allow for su-
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percritical levels of turbulent fluctuations, at which the poly-
mers are strongly stretched. In that case they can no longer
be considered as a passive field that does not affect the tur-
bulent fluctuations. In thisactive regime of the polymer
stretchingone cannot use Eq.s3.2d for the cross-correlation
tensorQT of the turbulent velocity fieldvsr ,td and polymeric
stretchingpsr ,td. In the present section we reconsider the
v-p correlations and show that in the active regime they are
determined by the so-calledhydroelastic waveswhich are
involved in transforming turbulent kinetic energy into poly-
mer potential energy and vice versaf9,11,15g. Therefore in
order to findQT in the active regime we need first to recon-
sider the basic properties of the hydroelastic waves them-
selves. This is done in Secs. IV A and IV B. In Sec. IV A we
demonstrate that the coupled Eqs.s4.4ad–s4.4ed for v andp
give rise to propagating hydroelastic plane waves

vk,bk ~ expfisk · r − vktd − gktg s4.1ad

with the dispersion lawvk and dampinggk:

vk = Îsk · P0 ·kd, s4.1bd

gk =
1

2
S 1

tp
+ n0k

2D . s4.1cd

Note that Eq.s4.1bd reduces to the form in Ref.f11g svk

~ ukRl ·kud when the tensorP0
i j is decomposed to the product

structure

P0
i j ~ kRiRjl → kRilkRjl. s4.2d

This approximation, which does not take into account the
correlations of fluctuations of different components of the
tensorP0, is not important for the purposes of Ref.f11g. It is
not appropriate in our context; for example the component
P0

xy, which vanishes in the approximations4.2d, is crucial in
transporting mechanical momentum to the wall.

For large shear, De@1, these wavesswith the exception
of those propagating exactly in the streamwise directionx̂d
have high quality factor:vk@gk. The desired cross-
correlation tensorQT is defined by the polarization of the
hydroelastic waves, that is the subject of Sec. IV B. In Sec.
IV C we derive the following equation for tensorQT:

QT
ij = Jact

i j ,klP0
kl, s4.3d

that is very similar to the corresponding Eq.s3.2d in the
passive regime. However, in Eq.s4.3d the proportionality
tensorJact, given by Eq.s4.12ad, is very different from the
corresponding tensorJpas in the passive regime.

A. Frequency and damping of hydroelastic waves

Equationss2.9ad–s2.9cd for the vectorv andtensorp can
be reformulated in terms of a newvector:

b ; tp = · p, s4.4ad

instead of the tensorp. The new equations read

Dv
Dt

= − S0 ·v + n0Dv − = p + gpb +Nv, s4.4bd

Db

Dt
= −

1

tp
b + S0 ·b − tpV̂2v +Nb, s4.4cd

where

V̂2 ; − = · P0 · = , s4.4dd

Nv ; − = ·vv, Nb ; tp = · Fp. s4.4ed

The linearized version of Eqs.s4.4ad–s4.4ed gives rise to hy-
droelastic wavesf9,11,15g with an alternating exchange be-
tween the kinetic energy of the carrier fluid and the potential
energy of the polymeric subsystem. In the simplest case of
space-homogeneous turbulent mediasno mean shear,S0=0d
the homogeneous Eqs.s4.4ad–s4.4ed have plane wave solu-
tions, cf. Eqs.s4.1ad–s4.1cd.

When the mean shear exists it appears in Eqs.s4.4ad–
s4.4ed with a characteristic frequencyS0. In the region of
parameters that we are interested in,S0 is much smaller than
the wave frequencyvk, but much larger than the wave damp-
ing frequencygk. This means that the shear does not affect
the wave character of the motion, but it can change the ef-
fective damping of the plain wave with a given wave vector
k. Indeed, due to the linear inhomogeneity of the mean ve-
locity sconstant sheard, the wave vector becomes time depen-
dent according to

dk

dt
= − S0

T ·k. s4.5d

This means that in the caseS0@gk the shear frequencyS0
serves as an effective decorrelation frequency instead ofgk:

gk ⇒ g = bS0, s4.6d

whereb is the dimensionless constant of the order of unity.
We reiterate that the limit De@1 is consistent with the

frequency of the hydroelastic wavesvk being much larger
than their effective damping.

B. Polarization of hydroelastic waves

The formal solution of the linear Eq.s4.4cd for b can be

written in terms of the Green’s functionĜp:

b = − tpsĜp + S0 · Ĝp
2dV̂2v, s4.7ad

Ĝp ; S D

Dt
+

1

tp
D−1

. s4.7bd

Denoting byFnst ,rd the result ofn-fold action Ĝp
n on the

function fst ,rd,

Fnst,rd ; Ĝp
nfst,rd, s4.8ad

one writes

F1st,rd =E
0

`

dtfst − t,r − S0 · rtd expS−
t

tp
D ,
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Fnst,rd =E
0

` dt tn−1

sn − 1d!
fst − t,r − S0 · rtd expS−

t

tp
D .

s4.8bd

By straightforward calculations one can show thatĜp sat-
isfies the following commutative relationship:

Ĝp = − = Ĝp = S0
T · Ĝp

2 = . s4.9d

Using this relation in Eq.s4.7ad repeatedly we can rewriteb
as

b = tpfsĜp = · P0 · = d + S0 · sĜp
2 = · P0 · = dgv

= tpfs= · P0 · Ĝp = d + s= ·S0 · P0 · Ĝp
2 = d

+ S0 · s= · P0 · Ĝp
2 = d + 2S0 · s= ·S0 · P0 · Ĝp

3 = dgv.

s4.10d

This is an exact relationship for the polarization of the hy-
droelastic waves in the presence of mean shear, and it will be
used in the analysis of the cross-correlation tensorQT.

C. General structure of the cross-correlation tensor

The cross-correlation tensorQT Eq. s2.4cd can be rewrit-
ten in terms of the vector fieldb as follows:

QT = −
1

tp
kvb + bvl. s4.11d

Substituting the vectorb from Eq. s4.10d into Eq. s4.11d one
finds that the cross-correlation tensorQT is proportional to
the elastic stress tensorP0, according to Eq.s4.3d, in which
the proportionality tensorJact is expressed in terms of the
second-order correlation functions of the velocity gradients,
as follows:

Jact
i jkl = J1

i jkl + J1
jikl + sJ2

i jk8l + J2
jik8ldS0

k8k

+ sS0
j j 8J2

i j 8kl + S0
ii8J2

ji8kld

+ 2sS0
j j 8J3

i j 8k8l + S0
ii8J3

ji8k8lS0
kk8d. s4.12ad

HereJn are time-integrated tensors defined as follows:

Jn ; E
0

` dt tn−1

sn − 1d!
Jstd expS−

t

tp
D , s4.12bd

Ji jklstd ; K ] vist,rd
] rk

] v jst − t,r8d
] r8l L , s4.12cd

and r8=r −tS0·r.
In order to estimate the relative importance ofJ1, J2, and

J3 in Eq. s4.12ad notice that the integrals in Eq.s4.12bd are
dominated by contributions from the longest hydroelastic
waves in the system. These longestk vectors have a decor-
relation timeg fwhich is estimated in Eq.s4.6dg, and are
characterized by a frequencyv that will be specified below.
Using these estimates we can approximate the time depen-
dence ofJi jklstd as follows:

Ji jklstd ⇒ si jkl fstd, s ; Js0d, s4.13ad

fstd = cossvtd exps− gtd. s4.13bd

Note that the assumption here is thatv andg do not depend
on the tensor indices. This is a simplifying assumption
that does not carry heavy consequences for the qualitative
analysis.

Under these assumptions the tensorsJn in Eq. s4.12ad can
be estimated as follows:

Jn
ijkl = fnsi jkl , s4.14ad

fn =E
0

` dt tn−1

sn − 1d!
fstd expS−

t

tp
D .

Resg + ivdn

sg2 + V2dn ,

s4.14bd

f1 .
g

V2, f2 . −
1

V2, f3 . −
3g

v4 . s4.14cd

At this point we need to estimatev. From Eq.s4.1bd we see
that we need to take the largest of component ofP0, and
smallest availablek vector which will be denoted askmin.
Since we expect thexx component ofP0 to be the largest
component, we write

v . ÎP0
xxkmin. s4.15d

We should note at this point that homogeneous turbulence
has no inherent minimalk vector, since there is no natural
scale. In reality there is always an outer scale which is de-
termined by external constraints. For further progress in the
analysis of the structure of the cross-correlation tensor one
needs to specify the outer scale of turbulence. To this end we
will consider in the next section homogeneous turbulence
with a constant shear as an approximation to wall bounded
turbulence of polymeric solution in the region of logarithmic
mean velocity profile.

V. POLYMER STRETCHING IN WALL BOUNDED
TURBULENCE

In this section we consider turbulent polymeric solutions
in wall bounded flows, and show that the elastic stress tensor
takes on the universal forms1.2ad–s1.2cd. This implies very
specific dependence of the components of the elastic stress
tensor on the distance from the wall. The theoretical predic-
tions will be checked against numerical simulations and will
be shown to be very well corroborated. Since we are inter-
ested in drag reduction we must consider here the active
regime when the polymers are sufficiently stretched to affect
the turbulent field. As mentioned before, large drag reduction
necessarily implies De@1. For concreteness we restrict our-
selves by considering the most interesting logarithmic-law
region. Extension of our results to the entire turbulent bound-
ary layer is straightforward.

A. Cross-correlation tensor in wall bounded turbulence

In this section we consider in more details tensorQT for
wall bounded turbulent flows. In this case the outer scale of

POLYMER STRESS TENSOR IN TURBULENT SHEAR FLOWS PHYSICAL REVIEW E71, 016305s2005d

016305-7



turbulence is estimated as the distance to the wall. Therefore
in Eq. s4.15d kmin,1/y wherey is the distance to the wall.

Also we can use the fact that in the turbulent boundary
layer the mean velocity has a logarithmic profile for both
Newtonian and viscoelastic flowsswith slopes that differ by
approximately a factor of 5d. Therefore the mean shearS0 is
inversely proportional to the distance to the wally and can
be estimated as

S0 .
ÎP
y

, s5.1d

whereP is the total flux of the mechanical momentumsfor
example, in the channel of half widthL, equal top8L, where
p8 is the pressure gradient in the streamwise directiond.

Another well established fact is that when the effect of
drag reduction is large, the momentum flux toward the wall
is carried mainly by the polymers. Then, Eq.s2.8d gives

P0
xy . P . sS0yd2. s5.2d

To estimate the frequencys4.15d we need to handle the
other component of the elastic stress tensor. Examining Eqs.
s2.12bd in the limit De@1 we will make the assumption that
the inequalitiess2.13d hold also in the strongly active regime.
This assumption will be justified self-consistently below. It
then follows immediately that

P0 . P0
xx . DesS0yd2, P0

yy . P0
zz.

sS0yd2

De
. s5.3d

Now we can estimate the characteristic frequency of hy-
droelastic waves in Eq.s4.15d as follows:

v = aÎDeS0, s5.4d

where the dimensionless parametera.1. One sees thatv
indeed is much larger thang=b S0, Eq. s4.6d, as we ex-
pected.

Next we can continue the analysis of the cross-correlation
tensor in wall bounded turbulence. Using the estimatess4.6d,
s4.14d, ands5.4d, we notice that

J1 . S0J2 . S0
2DeJ3 @ S0

2J3.

Therefore one can neglect terms withJ3 on the RHS of Eq.
s4.12ad. Moreover, we can further simplify Eq.s4.12ad, tak-
ing into account that the solution of the system of Eqs.
s2.4ad–s2.4dd and s4.12ad preserves the structure of polymer
stress tensors2.12bd in which P0

xx@P0
xy. This allows one to

neglect the two last terms in the first line of the RHS of Eq.
s4.12ad, where onlySxyÞ0. After that the cross-correlation
tensorQT, given by Eq.s4.3d in terms of tensorJact, Eq.
s4.12ad, can be represented via the second order tensor

Bij ; si j ,klP0
kl s5.5ad

as follows:

QT =
1

a2DeS0
fbsB + BTd − sB · ŷdx̂ − x̂sB · ŷdg. s5.5bd

Recall that we are looking for the tensorial structure of the
cross-correlation tensorQT in order to find the structure of

P0. One sees from Eq.s5.5ad that although the tensorP0 is
strongly anisotropicsits components differ by powers of Ded,
once contracted with the tensorsi j ,kl of a general form, it
gives a tensorB with components of the same order in De.
Then Eq.s5.5bd implies that the cross-correlation tensorQT
has components that are all of the same order in De. This
result is even stronger than the assumptions2.13d in our deri-
vation sthat we needed to recapture self-consistentlyd. Hav-
ing done so we can conclude that the elastic stress tensorP0
has the universal tensorial structure given by Eqs.s1.2ad–
s1.2cd.

Armed with this knowledge we observe that the leading
contribution toB on the RHS of Eq.s5.5ad is given byP0

xx

=2 De2P0
yy:

Bij = si j ,xxP0
xx = 2 De2si j ,xxP0

yy. s5.6ad

According to definitions4.12cd the tensorsi j ,xx=Ji j ,xxs0d can
be evaluated ascWij /y2, wherey is the outer scale of turbu-
lencesand distance to the walld, the Reynolds stress tensorW
was defined by Eq.s2.7d, and a new dimensionless constantc
is of the order of unity. Thus one has

Bij = 2c De2WijP0
yy/y2. s5.6bd

Now we can write an explicit equation forQT:

QT = d
tp

y2P0
yyHW −

1

2b
fsW · ŷdx̂ + x̂sW · ŷdgJ , s5.7d

whered;4b c/a2.

B. Explicit solution for the polymeric stress tensor

Having Eq.s5.7d for QT in terms ofP0 andW we can find
an explicit solution for the mean elastic stress tensorP0 in
the presence of intensive turbulent velocity fluctuations and
strong shear. As a first step in Eq.s2.4bd for Q we neglect the
equilibrium termPeqd /tp since it is expected to be much
smaller thanQT, which stems from turbulent interactions.
Then we substituteQ=QT into Eq. s2.11d for into Eq.
s2.12adg and solve the resulting equations. To leading order
in De=S0tp@1 sin each componentd this solution takes the
form Eqs.s1.2ad–s1.2cd with

C = Wzz/Wyy. s5.8d

Notice that in our approach the “constant” shear has to be
understood as a local,y-dependent shear in the turbulent
channel flow, according to Eq.s5.1d. Correspondingly, the
Deborah number also becomesy dependent.

De⇒ Desyd = S0sydtp .
ÎPtp

y
. s5.9d

Now Eqs.s5.2d and s5.3d provide an explicit dependence of
the components of tensorP0 on the distance from the wall:

P0 . P0
xx .

P3/2tp

y
,

P0
xy = P0

yx . P,

L’VOV et al. PHYSICAL REVIEW E 71, 016305s2005d

016305-8



P0
yy . P0

zz.
ÎPy

tp
. s5.10d

At this point we can summarize our procedure as follows.
First, we assumedthat theQ tensor is not strongly aniso-
tropic such that weak inequalitiess2.13d are valid. This al-
lowed us to use the universal forms1.2ad–s1.2cd of tensorP0
in actual calculations ofd the cross-correlation functionQT.
Then we demonstrated thatQT indeed satisfies the required
inequalitiess2.13d. This means that Eqs.s1.2ad–s1.2cd pre-
sentsa self-consistent solution of the exact equationsin the
limit De→`. The described procedure does not guarantee
that Eqs.s1.2ad–s1.2cd arethe only solutionof the problem at
hand. However, we propose that this solution is the realized
one, and we will check it next against numerical simulations.

C. Effective polymeric viscosity

Armed with the structure Eqs.s1.2ad–s1.2cd of the poly-
meric stress tensor, we can rewrite the equation of the me-
chanical balances2.8d as follows:

P = n0S0 − Wxy + tpP0
yyS0. s5.11d

This means that the polymeric contribution to the momentum
flux slast term on the RHS of this equationd can be consid-
ered as an “effective polymeric viscosity”np,

n0 ⇒ n0 + np, np = tpP0
yy. s5.12ad

Using Eq.s5.10d one gets universalstp-independentd linear
dependence ofnp:

np . ÎPy, s5.12bd

as was suggested in Ref.f12g sand see also Ref.f16gd.
The polymeric contribution to the rate of turbulent energy

dissipation has the form

«Tp
= Trks · Pl =

1

2
TrhQTj, s5.13d

see Eq.sA3ed in the Appendix. Using here Eq.s5.7d one gets

«Tp
=

dtp

2y2P0
yyF2K −

1

b
WxyG , s5.14d

whereK= 1
2TrhWj is the density of the turbulent kinetic en-

ergy. Having in mind that in the MDR regimeWxy.K, hav-
ing the same dependence on the distance from the wall, Eq.
s5.14d can be rewritten in terms of the effective polymeric
viscositynp, given by Eqs.s5.12ad and s5.12bd:

«Tp
= npku ¹ uu2l, s5.15d

whereku¹uu2l was estimated asK /y2.
Notice that the naive estimate for the effective polymeric

viscosity isñp.tpP0, which exceeds our results5.12ad and
s5.12bd by a factor of De2. The reason for this difference is
the wave character of the fluid motion; the naive result is
valid for the estimate of the characteristicinstantaneousen-
ergy flux. As usual in high quality waves or oscillations, the

rate ofenergy exchangebetween subsystems is much larger
than the rate ofenergy dissipation.

D. Comparison with DNS data

The tensorial structure of the polymer stress tensor was
studied in fair detail in DNS for channel flows in various
papers; see Refs.f17–21g and references therein. The main
problem is that the large Re regime at which the universal
MDR f2g is observed is hardly available. In these DNS the
maximal available De was below 100 at the wall, decreasing
to about 10 in the turbulent sublayer. For these conditions
only up to 50–60 % of the total momentum flux is carried by
the polymers. Nevertheless, we can compare our analytical
results for De→` with DNS at moderate De, at least on a
qualitative level.

The most frequently studied object isP0;TrhP0j. This
object is dominated by the streamwise componentP0

xx, see,
Fig. 12 in Ref.f17g, Fig. 5.3.1 in Ref.f18g, Fig. 6 in Ref.
f21g, etc. The accepted result is thatP0 decreases in the
turbulent layer. Our Eqs.s5.10d predict P0~1/y in this re-
gion. This rationalizes the DNS observations in Refs.
f17,18,20,21g. As an example, we present in Fig. 1 by black
squares the DNS data of Ref.f20g for the largest, streamwise
componentP0

xx and plotted by the solid black line the ex-
pectedfsee Eqs.s5.10dg profile ~1/y+. In spite of the fact
that the MDR asymptote with the logarithmic mean velocity
profile is hardly seen in that DNS, the agreement between the
DNS data and our prediction is obvious.

The effective polymeric viscosity was measured, for ex-
ample, in Ref.f17g, Fig. 5, and in Ref.f18g. In these Refs.
npsyd was understood asDpsyd /S0syd, where Dpsyd is the
Reynolds stress deficit, which isP0

xy according to Eq.s2.8d.
The observations of Refs.f17,18g are thatnpsyd in the turbu-

FIG. 1. Comparison of the DNS data Ref.f20g for the mean
profiles of Rxx and 103Ryy, the components of the dimensionless
conformation tensor, with analytical predictions. In our notation
P0

i j ;n0pRmax
2 Rij / stpReq

2 d. Black squares: DNS data for the stream-
wise diagonal componentRxx, that according to our theory, Eqs.
s5.10d, has to decrease as 1/y with the distance to the wall. Black
solid line: the function 1/y+. Red empty circles: DNS data for the
wall-normal component 10Ryy, for which we predicted a linear in-
crease withy+ in the log-law turbulent region. Red dashed line:
linear dependence,~y+.
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lent boundary layer grows linearly with the distance from the
wall. Recent data of DNS of the Navier-Stokes equation with
polymeric additivessusing the FENE-P modeld taken from
Ref. f20g are presented in Fig. 1. The wall-normal compo-
nentP0

yy is presented by the red empty circles. One sees that
sin the quite narrowd region 20,y+,60 swhere the mean
velocity profile is close of MDRd the profileP0

yy is indeed
proportional toy+, as represented by the red dashed line. This
is in agreement with our result; see Eq.s5.12bd and our
Ref. f12g.

Direct DNS of other components of the polymeric stress
tensor, see, e.g., Fig. 6 in Ref.f20g, also agrees with the
tensorial structure ofP0 given by Eqs.s5.10d.

VI. SUMMARY AND DISCUSSION

The aim of this paper was the analysis of the polymer
stress tensor in turbulent flows of dilute polymeric solutions.
On the face of it this object is very hard to pinpoint analyti-
cally, being sensitive to complex interactions between the
polymer molecules and the turbulent motions. We showed,
nevertheless, that in the limit of very high Deborah numbers,
De@1, this tensor attains a universal form. Increasing the
complexity of our turbulent ensemble, from laminar, through
homogeneous turbulence with a constant shear, and ending
up with wall bounded anisotropic turbulence, we proposed a
universal form

P0syd . P0
yysyd12 De2syd Desyd 0

Desyd 1 0

0 0 Csyd
2 . s6.1d

We rewrite this form here to stress that it remains un-
changed even when the Deborah number, and with it the
components of the tensor, become space dependent. Obvi-
ously, this strong result is expected to hold only as long as
the mean properties, including the mean shear, vary in space
in a controlled fashion, as, for example, in the logarithmic
layer near the wallsbe it a Kármán or a Virk logarithmd.

As an important application of these results we considered
in Sec. V the important problem of drag reduction by poly-
mers in wall bounded flows. A difficult issue that caused a
substantial confusion is the relation between the polymer
physics, the effective viscosity that is due to polymer stretch-
ing, and drag reduction. In recent work on drag reduction it
was shown that the Virk logarithmic maximum drag reduc-
tion asymptote is consistent with a linearly increasingswith
yd effective viscosity due to polymer stretching. This result
seemed counterintuitive since numerical simulations indi-
cated that polymer stretching is decreasing as a function ofy.
The present results provide a complete understanding of this
conundrum. “Polymer stretching” is dominated byP0

xx since
it is much larger than all the other components of the stress
tensor. As shown above, this component is indeed decreasing
wheny increases, cf. Fig. 1. On the other hand, the effective
viscosity is proportionalP0

yy, and this component is indeed
increasingslinearlyd with y, cf. Fig. 1. In fact, drag reduction
saturates precisely whenP0

xx and P0
yy become of the same

order.
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APPENDIX: EXACT ENERGY BALANCE EQUATIONS

In this appendix we present exact energy balance equa-
tions that are useful in the analysis of turbulence of the poly-
meric solutions. In the present study we employ only one of
them, i.e., Eq.sA3ed.

Introduce the mean densities of the turbulent kinetic en-
ergy ET and polymeric potential energyEp,

ET ;
1

2
W, W; TrhWj, sA1ad

Ep ;
1

2
P0, P0 ; TrhP0j. sA1bd

Using Eqs.s2.1ad–s2.1cd one can derive equations for the
balance ofET andEp and for their sum

DET

Dt
= «T

+ − «T
− − «Tp = 0, sA2ad

DEp

Dt
= «p

+ − «p
− + «Tp = 0, sA2bd

D

Dt
sET + Epd = «T

+ + «p
+ − «T

− − «p
− = 0. sA2cd

We denote by«T
+ and«p

+ the energy flux from the mean flow
to the turbulent and polymeric subsystem, respectively:

«T
+ ; − S0W

xy, sA3ad

«p
+ ; S0P0

xy; sA3bd

«T
− describes the dissipation of energy in the turbulent sub-

system, whereas«p
− is the dissipation in the polymeric sub-

system due to the relaxation of the stretched polymers back
to equilibrium:

«T
− ; n0Trks ·sTl, sA3cd

«p
− ;

1

2tp
TrsP0 − Peqd. sA3dd

The last term on the RHS of Eqs.sA2ad and sA2bd fthat is
absent in Eq.sA2cdg describes the energy exchange between
the polymeric and turbulent subsystems:

«Tp ; Trks · pl =
1

2
TrhQTj. sA3ed

Using the expression for the momentum flux, we obtain an
exact balance equation for the total energy,
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E = EV + ET + Ep, sA4ad

that in the stationary state reads

S0P =
1

2tp
TrsP0 − Peqd + n0sS0

2 + Trks ·sTld. sA4bd

In Eq. sA4ad EV is the density of the kinetic energy of the
mean flow, defined up to an arbitrary constant, depending on

the choice of the origin of coordinates. The LHS of Eq.
sA4bd describes the work of external forces needed to main-
tain the constant mean shear. The first term on the RHS
s~1/tpd describes the energy dissipation in the polymeric
subsystem. The termn0S0

2 represents the viscous dissipation
due to the mean shear, while the last term on the RHS is
responsible for the viscous dissipation caused by the turbu-
lent fluctuations.
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